Plasmonic crystal defect nanolaser.
نویسندگان
چکیده
Surface plasmons are widely interesting due to their ability to probe nanoscale dimensions. To create coherent plasmons, we demonstrate a nanolaser based on a plasmonic bandgap defect state inside a surface plasmonic crystal. A one-dimensional semiconductor-based plasmonic crystal is engineered to have stopbands in which surface plasmons are prohibited from travelling in the crystalline structure. We then confine surface plasmons using a three-hole defect in the periodic structure. Using conventional III-V semiconductors, we achieve lasing in mode volumes as small as V(eff) = 0.3(λ₀/n)³ at λ₀ = 1342 nm, which is 10 times smaller than similar modes in photonic crystals of the same size. This demonstration should pave the way for achieving engineered nanolasers with deep-subwavelength mode volumes and attractive nanophotonics integration capabilities while enabling the use of plasmonic crystals as an attractive platform for designing plasmons.
منابع مشابه
Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity
A low-threshold nanolaser with all three dimensions at the subwavelength scale is proposed and investigated. The nanolaser is constructed based on an asymmetric hybrid plasmonic F-P cavity with Ag-coated end facets. Lasing characteristics are calculated using finite element method at the wavelength of 1550 nm. The results show that owing to the low modal loss, large modal confinement factor of ...
متن کاملFrom vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers
We provide a numerical study showing that a bottom reflector is indispensable to achieve unidirectional emission from a photonic-crystal (PhC) nanolaser. First, we study a PhC slab nanocavity suspended over a flat mirror formed by a dielectric or metal substrate. We find that the laser’s vertical emission can be enhanced by more than a factor of 6 compared with the device in the absence of them...
متن کاملMonolithic III–V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects
Monolithic integration of III-V semiconductor lasers with Si circuits can reduce cost and enhance performance for optical interconnects dramatically. We propose and investigate plasmonic III-V nanolasers as monolithically integrated light source on Si chips due to many advantages. First, these III-V plasmonic light sources can be directly grown on Si substrates free of crystallographic defects ...
متن کاملPlasmonic Waveguide-Integrated Nanowire Laser
Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technologies. Despite significant advances in their fundamental aspects, the integration within scalable phot...
متن کاملPlasmonic bowtie nanolaser arrays.
Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design for a room-temperature nanolaser based on three-dimensional (3D) Au bowtie NPs supported by an organic gain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 19 19 شماره
صفحات -
تاریخ انتشار 2011